
BlazePose: On-device Real-time Body Pose tracking

Valentin Bazarevsky Ivan Grishchenko Karthik Raveendran
Tyler Zhu Fan Zhang Matthias Grundmann

Google Research
1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA

{valik, igrishchenko, krav, tylerzhu, zhafang, grundman}@google.com

Abstract

We present BlazePose, a lightweight convolutional neu-
ral network architecture for human pose estimation that is
tailored for real-time inference on mobile devices. During
inference, the network produces 33 body keypoints for a sin-
gle person and runs at over 30 frames per second on a Pixel
2 phone. This makes it particularly suited to real-time use
cases like fitness tracking and sign language recognition.
Our main contributions include a novel body pose track-
ing solution and a lightweight body pose estimation neural
network that uses both heatmaps and regression to keypoint
coordinates.

1. Introduction
Human body pose estimation from images or video plays

a central role in various applications such as health tracking,
sign language recognition, and gestural control. This task is
challenging due to a wide variety of poses, numerous de-
grees of freedom, and occlusions. Recent work [10][7] has
shown significant progress on pose estimation. The com-
mon approach is to produce heatmaps for each joint along
with refining offsets for each coordinate. While this choice
of heatmaps scales to multiple people with minimal over-
head, it makes the model for a single person considerably
larger than is suitable for real-time inference on mobile
phones. In this paper, we address this particular use case
and demonstrate significant speedup of the model with little
to no quality degradation.

In contrast to heatmap-based techniques, regression-
based approaches, while less computationally demanding
and more scalable, attempt to predict the mean coordinate
values, often failing to address the underlying ambiguity.
Newell et al. [9] have shown that the stacked hourglass
architecture gives a significant boost to the quality of the
prediction, even with a smaller number of parameters. We
extend this idea in our work and use an encoder-decoder
network architecture to predict heatmaps for all joints, fol-

Figure 1. Inference pipeline. See text.

lowed by another encoder that regresses directly to the co-
ordinates of all joints. The key insight behind our work is
that the heatmap branch can be discarded during inference,
making it sufficiently lightweight to run on a mobile phone.

2. Model Architecture and Pipeline Design
2.1. Inference pipeline

During inference, we employ a detector-tracker setup
(see Figure 1), which shows excellent real-time perfor-
mance on a variety of tasks such as hand landmark pre-
diction [3] and dense face landmark prediction [6]. Our
pipeline consists of a lightweight body pose detector fol-
lowed by a pose tracker network. The tracker predicts key-
point coordinates, the presence of the person on the cur-
rent frame, and the refined region of interest for the current
frame. When the tracker indicates that there is no human
present, we re-run the detector network on the next frame.

2.2. Person detector

The majority of modern object detection solutions rely
on the Non-Maximum Suppression (NMS) algorithm for
their last post-processing step. This works well for rigid ob-
jects with few degrees of freedom. However, this algorithm
breaks down for scenarios that include highly articulated
poses like those of humans, e.g. people waving or hugging.
This is because multiple, ambiguous boxes satisfy the inter-
section over union (IoU) threshold for the NMS algorithm.
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Figure 3. 33 keypoint topology.

To overcome this limitation, we focus on detecting the
bounding box of a relatively rigid body part like the human
face or torso. We observed that in many cases, the strongest
signal to the neural network about the position of the torso
is the person’s face (as it has high-contrast features and has
fewer variations in appearance). To make such a person
detector fast and lightweight, we make the strong, yet for
AR applications valid, assumption that the head of the per-
son should always be visible for our single-person use case.

Figure 2. Vitruvian man
aligned via our detector

vs. face detection
bounding box. See text

for details.

As a consequence, we use
a fast on-device face detec-
tor [2] as a proxy for a per-
son detector. This face detec-
tor predicts additional person-
specific alignment parame-
ters: the middle point between
the person’s hips, the size of
the circle circumscribing the
whole person, and incline (the
angle between the lines con-
necting the two mid-shoulder
and mid-hip points).

2.3. Topology

We present a new topology
using 33 points on the human body by taking the superset
of those used by BlazeFace[2], BlazePalm[3], and Coco[8].
This allows us to be consistent with the respective datasets
and inference networks.

In contrast with the OpenPose[4] and Kinect[1] topolo-
gies, we use only a minimally sufficient number of key-
points on the face, hands, and feet to estimate rotation, size,
and position of the region of interest for the subsequent
model. The topology we use is shown in Figure 3. For
additional information, please see Appendix A.

2.4. Dataset

Compared to the majority of existing pose estimation so-
lutions that detect keypoints using heatmaps, our tracking-

Figure 4. Network architecture. See text for details.

based solution requires an initial pose alignment. We re-
strict our dataset to those cases where either the whole per-
son is visible, or where hips and shoulders keypoints can be
confidently annotated. To ensure the model supports heavy
occlusions that are not present in the dataset, we use sub-
stantial occlusion-simulating augmentation. Our training
dataset consists of 60K images with a single or few peo-
ple in the scene in common poses and 25K images with a
single person in the scene performing fitness exercises. All
of these images were annotated by humans.

2.5. Neural network architecture

The pose estimation component of our system predicts
the location of all 33 person keypoints, and uses the per-
son alignment proposal provided by the first stage of the
pipeline (Section 2.1).

We adopt a combined heatmap, offset, and regression ap-
proach, as shown in Figure 4. We use the heatmap and offset
loss only in the training stage and remove the correspond-
ing output layers from the model before running the infer-
ence. Thus, we effectively use the heatmap to supervise the
lightweight embedding, which is then utilized by the regres-
sion encoder network. This approach is partially inspired by
Stacked Hourglass approach of Newell et al. [9], but in our
case, we stack a tiny encoder-decoder heatmap-based net-
work and a subsequent regression encoder network.

We actively utilize skip-connections between all the
stages of the network to achieve a balance between high-
and low-level features. However, the gradients from the re-
gression encoder are not propagated back to the heatmap-
trained features (note the gradient-stopping connections in
Figure 4). We have found this to not only improve the
heatmap predictions, but also substantially increase the co-
ordinate regression accuracy.

2.6. Alignment and occlusions augmentation

A relevant pose prior is a vital part of the proposed solu-
tion. We deliberately limit supported ranges for the angle,
scale, and translation during augmentation and data prepa-
ration when training. This allows us to lower the network



capacity, making the network faster while requiring fewer
computational and thus energy resources on the host device.

Based on either the detection stage or the previous frame
keypoints, we align the person so that the point between
the hips is located at the center of the square image passed
as the neural network input. We estimate rotation as the
line L between mid-hip and mid-shoulder points and rotate
the image so L is parallel to the y-axis. The scale is esti-
mated so that all the body points fit in a square bounding
box circumscribed around the body, as shown in Figure 2.
On top of that, we apply 10% scale and shift augmentations
to ensure the tracker handles body movements between the
frames and distorted alignment.

Figure 5. BlazePose results
on upper-body case

To support the predic-
tion of invisible points, we
simulate occlusions (random
rectangles filled with various
colors) during training and
introduce a per-point visibil-
ity classifier that indicates
whether a particular point is
occluded and if the position
prediction is deemed inac-
curate. This allows track-
ing a person constantly even
for cases of significant oc-
clusions, like upper body-
only or when the majority of person body is out of scene
as shown on Figure 5.

3. Experiments

To evaluate our model’s quality, we chose OpenPose [4]
as a baseline. To that end, we manually annotated two in-
house datasets of 1000 images, each with 1–2 people in the
scene. The first dataset, referred to as AR dataset, consist
of a wide variety of human poses in the wild, while the sec-
ond is comprised of yoga/fitness poses only. For consis-
tency, we only used MS Coco [8] topology with 17 points
for evaluation, which is a common subset of both OpenPose
and BlazePose. As an evaluation metric, we use the Percent
of Correct Points with 20% tolerance (PCK@0.2) (where
we assume the point to be detected correctly if the 2D Eu-
clidean error is smaller than 20% of the corresponding per-
son’s torso size). To verify the human baseline, we asked
two annotators to re-annotate the AR dataset independently
and obtained an average PCK@0.2 of 97.2.

We trained two models with different capacities:
BlazePose Full (6.9 MFlop, 3.5M Params) and BlazePose
Lite (2.7 MFlop, 1.3M Params). Although our models show
slightly worse performance than the OpenPose model on

1Desktop CPU with 20 cores (Intel i9-7900X)
2Pixel 2 Single Core via XNNPACK backend

Model FPS AR Dataset,
PCK@0.2

Yoga Dataset,
PCK@0.2

OpenPose (body only) 0.41 87.8 83.4
BlazePose Full 102 84.1 84.5
BlazePose Lite 312 79.6 77.6

Table 1. BlazePose vs OpenPose

Figure 6. BlazePose results on yoga and fitness poses.

the AR dataset, BlazePose Full outperforms OpenPose on
Yoga/Fitness use cases. At the same time, BlazePose per-
forms 25–75 times faster on a single mid-tier phone CPU
compared to OpenPose on a 20 core desktop CPU[5] de-
pending on the requested quality.

4. Applications

We developed this new, on-device, single person-
specific human pose estimation model to enable various
performance-demanding use cases such as Sign Language,
Yoga/Fitness tracking and AR. This model works in near-
realtime on a mobile CPU and can be sped up to super-
realtime latency on a mobile GPU. As its 33 keypoint topol-
ogy is consistent with BlazeFace[2] and BlazePalm[3], it
can be a backbone for subsequent hand pose[3] and facial
geometry estimation[6] models.

Our approach natively scales to a bigger number of key-
points, 3D support, and additional keypoint attributes, since
it is not based on heatmaps/offset maps and therefore does
not require an additional full-resolution layer per each new
feature type.



References
[1] Azure kinect body tracking joints.

https://docs.microsoft.com/en-us/azure/
kinect-dk/body-joints. [Online; accessed April 2,
2020]. 2

[2] Valentin Bazarevsky, Yury Kartynnik, Andrey Vakunov,
Karthik Raveendran, and Matthias Grundmann. Blaze-
face: Sub-millisecond neural face detection on mobile gpus.
CoRR, abs/1907.05047, 2019. 2, 3

[3] Valentin Bazarevsky and Fan Zhang. On-device, real-time
hand tracking with mediapipe.
https://ai.googleblog.com/2019/08/
on-device-real-time-hand-tracking-with.
html. [Online; accessed April 2, 2020]. 1, 2, 3

[4] Z Cao, G Martinez Hidalgo, T Simon, SE Wei, and YA
Sheikh. Openpose: Realtime multi-person 2d pose estima-
tion using part affinity fields. IEEE transactions on pattern
analysis and machine intelligence, 2019. 2, 3

[5] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh. Openpose 1.1.0 benchmark.
https://docs.google.com/spreadsheets/d/
1-DynFGvoScvfWDA1P4jDInCkbD4lg0IKOYbXgEq0sK0.
[Online; accessed March 30, 2020]. 3

[6] Yury Kartynnik, Artsiom Ablavatski, Ivan Grishchenko,
and Matthias Grundmann. Real-time facial surface ge-
ometry from monocular video on mobile gpus. CoRR,
abs/1907.06724, 2019. 1, 3

[7] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. Pifpaf:
Composite fields for human pose estimation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 11977–11986, 2019. 1

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 2, 3

[9] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European con-
ference on computer vision, pages 483–499. Springer, 2016.
1, 2

[10] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose esti-
mation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5693–5703, 2019. 1

Appendix A. BlazePose keypoint names

0. Nose
1. Left eye inner
2. Left eye
3. Left eye outer
4. Right eye inner
5. Right eye
6. Right eye outer
7. Left ear
8. Right ear
9. Mouth left

10. Mouth right
11. Left shoulder
12. Right shoulder
13. Left elbow
14. Right elbow
15. Left wrist
16. Right wrist
17. Left pinky #1 knuckle
18. Right pinky #1 knuckle
19. Left index #1 knuckle
20. Right index #1 knuckle
21. Left thumb #2 knuckle
22. Right thumb #2 knuckle
23. Left hip
24. Right hip
25. Left knee
26. Right knee
27. Left ankle
28. Right ankle
29. Left heel
30. Right heel
31. Left foot index
32. Right foot index
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